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ABSTRACT 
A C° layerwise plate element with standard nodal d.o.f. and serendipity interpolation functions is applied to the 

analysis of laminates and sandwiches giving rise to strong layerwise effects. The element is obtained  using an 

energy updating technique and symbolic calculus  starting from a physically-based zig-zag model with variable 

kinematics and fixed d.o.f. able to a priori satisfy to displacement and stress continuity at the material interfaces. 

Non classical feature, a high-order  piecewise zig-zag variation of  the transverse displacement is assumed as it 

helps keeping equilibrium. Crushing of core is studied carrying apart a detailed 3D modelling of the honeycomb 

structure discretizing the cell walls with plate elements, with the aim of obtaining apparent elastic moduli at 

each load level. Using such apparent moduli, a 2D homogenized analysis is carried out simulating sandwiches 

as multi-layered structures Applications are presented to plates undergoing impulsive loading incorporating 

plies with spatially variable stiffness properties. It is shown that accurate predictions are always obtained in in 

the numerical applications with a very low computational effort. Compared to kinematically based zig-zag 

models, present physically based one is proven to more accurate, being always in a good agreement with exact 

3D solutions. 

Keywords – Impulsive loading, Indentation, Hierarchic representation, Optimized tailoring, Stress relaxation, 

Variable stiffness composites.  

 

I. INTRODUCTION 
Laminated and sandwich composites are 

increasingly finding use as they offer the possibility 

to optimize structural performances by properly 

choosing fibre orientation and stacking lay-up. These 

materials are widespread also owing to their high 

specific strength and stiffness,  since they enable 

construction of structures that achieve the target 

requirements with the lowest mass possible  (see, e.g. 

Sliseris and Rocens [1]). 

Due to their inhomogeneous microstructure,  

unfortunately,  they suffer from critical local stress 

concentrations that give rise to micro-damage 

formation and  growth in service. Because elastic 

moduli and strengths in the in-plane direction are 

much bigger compared to those in the thickness 

direction, warping, shearing and straining 

deformations of the normal take place. A recent, 

comprehensive discussion about the mechanisms of 

damage formation and evolution and about their 

modelling is given by Càrdenas et al. [2]. As 

discussed by Chakrabarti et al. [3], Qatu et al. [4] and 

Zhang and Yang [5], these so called zig-zag and 

layerwise effects should be described with the 

maximal accuracy but with the lowest costs, in order 

to explore many possible design options with 

affordable costs.  

 

Composite plate and shell theories and elements 

have been developed using different approaches. As 

examples of early theories, the papers by Wu and Liu 

[6], Cho et al. [7] and Averill and Yip [8] are cited. A 

review of such theories is presented in the paper by 

Burton and Noor [9]. An extensive discussion of the 

various techniques used to account for the layerwise 

effects and extensive assessments of their structural 

performances have been recently presented in the 

papers by Chakrabarti et al. [3], Matsunaga [10], 

Chen and Wu [11], Kreja [12], Tahani [13] and 

Gherlone [14]. In particular, accuracy of finite 

element models is assessed by Chakrabarti et al. [3], 

Zhang and Yang [5], Shimpi and Ainapure [15], 

Elmalich and Rabinovitch [16], Dau et al. [17], Feng 

and Hoa [18], Desai et al. [19], Ramtekkar et al. [20], 

To and Liu [21]. Zhen et al [22], Cao et al. [23] and 

Dey at al. [24]. 

Laminates and sandwiches with laminated faces 

constructed using automated fibre-placement 

technology  (Barth [25]) whose reinforcement  fibres 

follow curvilinear paths that are obtained using 

advanced optimization techniques achieve the 

maximal performance, as shown by Sousa  et al. [26] 

and Honda et al. [27], and contemporaneously can 

relax  critical local stress concentrations, as shown 

e.g. by Icardi and Sola [28]. Many iterations being 
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required by the optimization process, the use of  

efficient structural models that account for the zig-

zag and layerwise effects with the minimal 

processing time and memory storage occupation 

becomes mandatory. Otherwise a mistaken prediction 

of  these effects could result in inaccurate evaluations 

of strength, stiffness, failure behaviour and service 

life. 

When a separate representation of layers is used, 

computational costs can become unaffordable for 

analysis and optimization of structures of industrial 

complexity, since the number of variables increases 

with the number of physical/computational layers. 

Models and elements based on a combination of 

global higher-order terms and local layerwise 

functions have been proven to be equally accurate but 

with a much lower computational effort (see, e.g. 

Elmalich and Rabinovitch [16] and the references 

therein cited).  The Murakami‟s zig-zag function just 

based upon kinematic assumptions is often used as 

local layerwise function, but the assessments carried 

out by Gherlone [14] proven that it is accurate for 

periodical stack-ups, but not for laminates with 

arbitrary stacking sequences, or for asymmetrical 

sandwiches with high face-to-core stiffness ratios, 

like when a face is damaged.  

On the contrary, physically-based zig-zag 

models have been proven to be always accurate. 

Refinements have been progressively brought to 

these models in order to achieve a good accuracy 

with the lowest computational burden and to 

successfully treat panels with low length-to-thickness 

ratio and abruptly changing material properties like 

sandwiches. To this purpose, sublaminate models 

having top and bottom face d.o.f. were developed by 

Aitharaju and Averill [29] and subsequently by other 

researchers in order to stack computational layers.  

The displacement field was recast in a global-local 

form to accurately predict stresses from constitutive 

equations (see, Li and Liu [30], Zhen and Wanji [31] 

and Vidal and Polit [32]), because post-processing 

operations are unwise for finite elements and cannot 

always give accurate results, as shown by  Cho et al. 

[7]. Of course,  sandwiches can be described as 

multi-layered structures assuming the honeycomb 

core as a thick intermediate homogeneous layer 

whenever a detailed description of local phenomena 

in the cellular structure is unnecessary (see, Phan et 

al. [33], Gibson and Ashby [34]).  

The authors have recently developed a 

physically-based zig-zag model [35] aimed at 

carrying out  the analysis of  multi-layered and 

sandwich composites having abruptly changing 

properties with the minimal computational burden. 

Its characteristic feature is a high-order  

piecewise zig-zag representation of the displacements 

that can be locally refined to obtain accurate stress 

predictions from constitutive relations, though its 

functional d.o.f. are fixed (the classical displacements 

and shear rotations of the normal at the mid-plane).  

Accurate results were obtained in the numerical 

applications with a computational effort comparable 

to that of equivalent single-layer models, thus 

considerably lower than for available layerwise 

models [35]. Symbolic calculus was used to obtain 

automatically and once for all in closed-form the 

relations required  to a priori satisfy the  physical 

constraints. In order to describe the core‟s crushing 

behaviour of sandwiches,  a high-order  piecewise 

zig-zag variation of  the transverse displacement was 

assumed, while usually this is avoided in order to 

simplify algebraic manipulations.  This 

representation also helps keeping equilibrium at cut-

outs, free edges, nearby  material/geometric 

discontinuities and to predict stresses caused by 

temperature gradients (see, e.g. [22] and [36]).  

Regrettably, physically-based zig-zag models 

involve  derivatives of the functional d.o.f., which 

thus should appear as nodal d.o.f. when developing 

finite elements. Consequently C1 or  high-order 

representations are required, instead of 

computationally efficient C° interpolation functions. 

Techniques have been proposed for converting 

derivatives, but they result in an increase of the nodal 

d.o.f and thus of the memory storage dimension (see, 

e.g. Sahoo and Singh [37]). The energy updating 

technique [38] - [41], hereafter referred as SEUPT, 

originally developed as an iterative post-processing 

technique to improve the predictive capability of 

shear deformable commercial finite elements has 

been revised by the authors in [40] in order to obtain 

an equivalent C0 version of the zig-zag model [35] 

by the energy standpoint, which was used to develop 

an efficient eight node plate element. 

In this paper, the finite element [40] is applied to 

study the indentation of sandwiches, to analyse the 

response of composite plates undergoing blast pulse 

loading and to consider the effects of variable-

stiffness layers on the response of laminated and 

sandwich composites and on their stress fields. The 

numerical results are presented in the following 

sequence. Accuracy of the element is assessed 

comparing results for laminates with different 

stacking sequences, for sandwich plates and beams 

with asymmetric lay-ups, which give rise to strong 

layerwise effects, to exact three-dimensional 

solutions. As a further assessment, the collapse 

behaviour of honeycomb core will be studied using 

the element to discretize the cellular structure in 

details. Using the apparent elastic moduli varying 

with the load computed in this way, indentation 

studies are carried out in homogenized form 

discretizing sandwiches as multi-layered panels. In 

these cases, the comparison is made with 

experimental results from the literature. Finally,  

applications will be presented  to plates undergoing 
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impulsive loading, which incorporate plies with 

spatially variable stiffness properties. The reasons for 

the choice of these samples cases are as follows. 

Many studies investigating the core crushing 

mechanism have been presented in the literature 

where often a detailed finite element simulation of 

the cellular structure of honeycomb is adopted 

(Aminanda et al. [42]), because only in this way  the 

buckling of cell walls can be accurately described. 

Solid elements are often used to discretize foam core 

(Mamalis et al. [43]). Crushing of core is followed by 

tearing of the loaded face. The topology of cells, their 

relative density and the thickness of the foil have 

considerable influence on this behaviour. Sandwiches 

being used as primary structures need an accurate 

simulations of these phenomena. However, despite 

accuracy could not always be maximal, in an 

industrial environment it is more attractive carrying 

out the simulations with advanced 2-D layerwise 

plate elements instead of  using 3-D FEA and 

considering stress-based failure criteria instead of 

fracture mechanics or cohesive zone models (see, 

e.g., Panigrahi and Pradhan [44] and Menna et al. 

[45]), in order to keep affordable the computational 

burden. At the authors‟ best knowledge,  no 

applications of  last generation of refined zig-zag 

models and related elements have been still presented 

to indentation studies, in spite they could speed up 

simulations, saving computational costs and 

preserving accuracy. 

To accurately describe crushing but with a low 

cost, in this paper the behaviour of core under 

transverse loading is determined apart once at a time 

by a finite element analysis where the cell walls are 

discretized by the present plate elements. In this way, 

the variation of the apparent properties of core under 

transverse loading are determined as apparent elastic 

moduli that vary with loading. The onset of damage 

is determined using stress-based criteria, but instead 

of considering a healthy material, a damaged material 

is considered at each iteration using the continuum 

damage mesomechanic model by Ladevèze et al. 

[46], [47].  This model provides a modified 

expression of the strain energy that accounts for the 

effects of the damage on the microscale, then stresses 

are computed taking into consideration the effects of 

local damage. The progressive failure analysis is 

carried out extending a pre-existing damage/failure  

to the points where the ultimate condition is reached, 

as predicted by stress-based criteria. Because the 

properties are assumed to vary with the applied load 

and from point to point over the contact area, the 

most relevant local phenomena in the core are 

considered. Once the apparent elastic  properties of 

core have been determined, the analysis is carried out 

in 2-D form using elements [40], thus describing 

sandwiches as multi-layered plates.  

As customarily, the indentation depth and the 

contact area are computed assuming the distribution 

of the contact force to be Hertzian and the projectile 

as a rigid body. The contact area is evaluated at any 

time step using the iterative algorithm by Palazotto et 

al. [48] that forces the surface of the target to 

conform to the shape of the impactor, as required by 

soft media. Because there is an equivalence between 

static and dynamic results for low velocity impacts, 

just a static simulation could be carried out. 

Nevertheless, the Newmark‟s implicit time 

integration scheme is employed to solve the transient 

dynamic equations, as it was developed to treat 

general transient dynamic problems of practical 

interest, as blast pulse loading.  

In order to assess the potential advantages that 

could be obtained using variable stiffness composites, 

in particular whether  a relaxation of critical stress 

concentrations can be obtained in practical test cases 

contemporaneously to a maximization of stiffness 

properties, the optimal property distributions 

computed by the tailoring optimization technique 

(OPTI) presented in Ref. [28] are used in the 

numerical applications. Using OPTI, the optimization 

problem of variable-stiffness composites turns into a 

simple problem of finding the appropriate stacking 

sequence, like with straight-fibre composites, which 

can be efficiently solved using the classical 

optimization techniques, because the optimal solution 

is computed apart once for all in closed or numerical 

form.  As a consequence, a layerwise structural 

model can be used for having a realistic prediction of 

the structural behaviour  without  resulting into a 

unaffordable computational effort.  

 

II. STRUCTURAL MODEL  
The displacement field is assumed as the sum of 

four separated contributions [35]: 
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whose purpose is explained hereafter. Symbols 

u, v and w respectively define the elastic 

displacements in the directions x, y and z of a 

rectangular Cartesian reference frame  with (x, y) on 

the middle surface of the plate (Ω) and z normal to it. 

 

A. Basic contribution Δ
0 

Contributions with superscript
0
 repeat the 

kinematics of the FSDPT model, as they contain just 

a linear expansion in z: 
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Displacements u
0
(x, y), v

0
(x, y), w

0
(x, y) and 

transverse shear rotations γx
0
(x, y) and γy

0
(x, y) at the 

middle plane represent the five functional d.o.f. of the 

model (1). 

 

B. Variable kinematics contribution Δ
i
 

Contributions with superscript
 i

 are variable 

kinematic contributions that  enable the 

representation to vary from point to point across the 

thickness, in order to refine the model where 

necessary:  
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The unknown coefficients 1xA … znA  are 

computed as expressions of the functional d.o.f. and 

of their derivatives by enforcing conditions: 

0|0|  lxz

u

xz 
 

(4) 

0|0|  lyz

u

yz   (5) 

llzz

uu

zz pp |||| 00    (6) 

0|0| ,,  lzzz

u

zzz   (7) 

and the equilibrium at discrete points across the 

thickness: 
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                        (8) 

The symbols 
(k)

z
+
 and 

(k)
z

-
 were used to indicate 

the position of the upper
+
 and lower 

-
 surfaces of the 

k
th

 layer and the superscript
(k)

  the quantities that 

belong to a generic layer k. A comma was used to 

indicate differentiation.  

The expressions of the unknowns Ax1 … Azn are 

obtained in closed-form as functions of the d.o.f. and 

of their derivatives using MATLAB® symbolic 

software package, thus they neither results into a 

considerably larger computational effort, nor into a 

larger memory storage. Because derivatives are 

unwise for the development of finite elements, the 

technique described forward  and therein referred as 

SEUPT will be used to obtain a C° equivalent model. 

It could be noticed that unknowns Ax1 … Azn can 

be determined also in order to fulfil boundary 

conditions such as clamped edges. It is reminded that 

assuming mid-plane displacements and shear 

rotations as functional d.o.f.,  when they are enforced 

to vanish in order to satisfy clamped constraints  it 

automatically results that erroneous vanishing 

transverse shear stresses could be obtained. The 

successful application of the model to structures with 

clamped edges was shown in [35], [41] and [49]. A 

case will be also shown in this paper (Case B, section 

VI.B.2). 

 

C. Zig-zag piecewise contribution Δ
c
 

These contributions, are assumed in the 

following form: 
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They are aimed at making the displacements 

continuous and with appropriate discontinuous 

derivatives in the thickness direction at the interfaces 

of constituent layers, in order to a priori fulfil the 

continuity of interlaminar stresses at the material 

interfaces. Terms Φx
k
, Φy

k
 are incorporated in order to 

satisfy continuity of transverse shear stresses: 
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while Ψ
k
, Ω

k
 terms enable the fulfilment of continuity 

conditions:  
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which directly derive from the local equilibrium 

equations as a consequence of the continuity of 

transverse shear stresses.  

Terms Cu
k
, Cv

k
 and Cw

k
 restore the continuity of  

displacements at the points across the thickness 

where the representation is varied: 
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D. Variable in-plane representation Δ
c_ip

 

Contributions Δ
c_ip

 are incorporated in order to 

restore continuity when the material properties 

suddenly change moving along x or y: 
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 (13a) 

The exponent of (x – xk)
n
, (y – yk)

n
 is chosen in 

order to make continuous the gradient of order n of a 

stress component of interest. The expressions of all 

the continuity functions defined above are obtained 

once for all in a closed form by enforcing the 

fulfilment of the pertinent continuity conditions 

(Icardi and Sola [49]). 

 

III. C0 EQUIVALENT MODEL AND FINITE 

ELEMENT 
As well known, energy-based weak form 

versions of governing equations can be used to 

construct equivalent forms by the energy standpoint 

using various techniques. As shown by Icardi [38] 

and [39], an iterative post-processing technique 

working on a spline interpolation of results can be 

developed with the aim of constructing an updated 

solution that locally improves the accuracy of a finite 

element analysis by standard shear-deformable plate 

elements. In this way, accuracy can be improved up 

to the level of a layerwise model in the most critical 

regions, with a low computational effort.  

The idea can also be used to derive a modified 

expression of the displacements fields by a structural 

model, in order to obtain a C
0
 formulation free from 

derivatives to use for developing accurate and 

efficient finite element models, as shown by Icardi 

and Sola [39] - [41]. Applications of this technique, 

hereafter referred as SEUPT, to sample test cases 

with exact solutions and intricate through-the-

thickness stress distributions, have shown that the 

equivalent model (EM) free from derivatives that is 

obtained  from the consistent model (OM) of Eqs. 

(1)-(13a) is capable of providing results that are 

equally accurate, requiring a comparable low 

computational effort. The steps to develop an 

efficient finite element plate model with C° 

interpolation functions and standard nodal d.o.f. from 

the EM model are the following ones. 

Hereon the displacements by the OM model will 

be indicated as 
OMzyxu ),,( , 

OMzyxv ),,( ,
OMzyxw ),,( , their counterparts 

representing the equivalent C
0
 model EM obtained by 

SEUPT will be indicated as 
EMzyxu ),,( , 

EMzyxv ),,( , ( , , )EMw x y z or, in compact form, 

respectively as 
OM  and 

EM . In a similar way, all 

quantities by the OM model will be indicated with 

the superscript 
OM

, while those referring to EM model 

with the superscript 
EM

. 

The basic assumption of SEUPT is that 

postulating displacements 
EM  as the sum of 

terms
  that are just functions of the d.o.f. and 

terms
  containing all the derivatives of the d.o.f.  
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thus an equivalent C° version EM of the zig-zag 

model OM can be obtained by the energy standpoint, 

which can be used to develop an efficient plate 

element. The expressions of 
  are derived from 

the energy balance, which is written in compact form 

as:  

(.) | (.) | (.) |

(.) | 0

E Λi Λ f

Λm

  



  

 

  


        (15) 

its three contributions being the strain energy,  the 

work of external forces  and the work of inertial 

forces, respectively. 

To compute corrective terms 
 , the energy 

balance (15) is split into five independent balance 

equations, one for each primary variable, using  the 
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principle of virtual work with the inertial forces 

accounted for, then each of these five contributions is 

further split collecting apart the single contributions 

of primary variables multiplying the same virtual 

displacement.  The expressions of corrective terms 
  are obtained equating each contribution by the 

OM model to its counterpart by the EM model: 

    0|(.)|(.)
00

  

EMu

E

OMu

E
 ; 

    0|(.)|(.)
00

  

EMv

E

OMv

E
 ;

    0|(.)|(.)
00

  

EMw

E

OMw

E
 ;       (16) 

    0|(.)|(.)
00

  

EM

E

OM

E

xx 

 ; 

    0|(.)|(.)
00

  

EM

E

OM

E

yy 

 ; 

Previous equations state that whether the 

consistent displacement fields by the OM model 

satisfy the energy balance, the modified 

displacements by the EM model satisfy it too, thus 

they represent an admissible solution by the energy 

standpoint. To solve once for all in closed form using 

symbolic calculus, appropriate spatial distributions of 

displacements under the same loading and boundary 

conditions should be postulated. 

Assume that the domain Ω is decomposed into 

small generic quadrilateral subdomains Ω* The 

variation of the functional d.o.f. inside Ω* is 

expressed through Hermite‟s polynomials, since they 

represent the right interpolation scheme for 

developing a conforming element from the OM 

model. At least products of 5
th

 order Hermite 

polynomials in x and y should be assumed because at 

least third-order derivatives in x, y are involved by 

the OM model. A regular solution is obtained in Ω by 

the superposition of solutions within  subdomains Ω* 

because the Hermitian interpolation makes 

continuous the d.o.f. and their derivatives across 

adjacent subdomains. The purpose of SEUPT is to 

find a C
0
 formulation represented by the equivalent 

EM model that allows for a computationally efficient 

Lagrangian representation, thus this type of 

representation is adopted in Eqs. (16) for the EM 

model. Because the continuity of displacement 

derivatives and stresses at sides and vertices of 

subdomains cannot be satisfied by the Lagrangian 

interpolation, it should be preliminary enforced in the 

OM model while computing terms Δ
c_ip

 of Eqs (13), 

(13a). 

Because the EM model is just equivalent form 

the energy standpoint to the OM model, it only 

provides a correct solution in terms of displacement 

d.o.f. at any point, thus all the derived quantities like 

stresses should be computed by  the OM model. 

Because expressions are obtained once for all via 

symbolic calculus, all updating operations and the 

computation of stresses are carried out in a very fast 

way requiring a very low computational effort in the 

numerical applications. 

At this point, an efficient displacement-based, 

isoparametric  C° plate element can be developed 

using standard techniques [39]. Because no 

derivatives are involved as nodal d.o.f., the vector of 

nodal unknowns can be assumed as:        

 Q   





0 0 0 0

1 1 1 1 1 2 2 2 2 2

0 0

8 8 8 8 8

, , , , * , , , , , *,....,

, , , , *

o o o o o o

x y x y

T
o o o

x y

u v w u v w

u v w

   

 

      

  

       (17) 

(See inset in Figure 3). Consequently, standard 

serendipity Lagrangian interpolation functions can be 

used.  At corners nodes (1, 2, 3, 4)  they are 

expressed as: 

1 1

0

1
(1 )(1 ( 1) )( ( 1) 1)

4

i i

i i oi oi oiN                   (18) 

while at mid-side nodes (5, 6, 7, 8)  they are 

expressed as:  

2

5 5 05

2

6 6 06

2

7 7 07

2

8 8 08

1
(1 )(1 )

2

1
(1 )(1 )

2

1
(1 )(1 )

2

1
(1 )(1 )

2

o

o

o

o

N

N

N

N

 

 

 

 

  

  

  

  

                        (19) 

Such a parabolic representation is chosen in 

order to obtain accurate results with a relatively 

coarse meshing, because accuracy of isoparametric 

four node quadrilateral elements can be  too poor, as 

shown in the literature. It is reminded that no post-

processing operations like integration of local 

differential equilibrium equations are required, since 

the stresses are accurately computed by the OM 

model from constitutive equations. 

As customarily, mapping is used to standardize 

the computation of energy integrals, obtaining a 

square element with unit sides from any quadrilateral 

element in the physical plane  





8

1i

ii Nxx  and 



8

1i

ii Nyy                        (20) 

This isoparametric formulation allows to efficiently 

compute the Jacobian matrix 







































yx

yx

J ][                                      (21) 
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which is required to obtain the physical 

derivatives
x


, 

y


 from the derivatives 




, 




over the natural plane 

 

























































1
J

y

x                                      (22) 

 

The stiffness matrix is computed from the strain 

energy functional in the standard way as: 

dVBDBK
Ve

T ]][[][][                         (23) 

the strains in infinitesimal form here considered 

being expressed as: 

  }{}{ QB
                                   

        (24) 

and the stresses as: 

   }{}{ QBD                                      (25) 

 D  being the matrix of 3D elastic coefficients, Ve  

and the volume of the element. 

 The mass matrix is obtained from the kinetic energy 

functional as customarily:     

dVNNM
Ve

T ][][][                                        (26) 

 being the density. The vector of nodal loads is 

evaluated from the expression of the work of external 

forces in the standard way as: 

   

   

[ ]

[ ] [ ]

T

Ve

T T

Se

Fe N X dV

N f dS N F

 

 



 %

                      (27) 

 X  being the vector of body forces,  f  the vector 

of surface forces applied on the surface Se  and  F
~

 

the point forces.  Integrations are carried out using a 

3x3 Gaussian integrations scheme, since selective 

reduced integration is unnecessary because locking is 

avoided by a suited choice of coefficients Δ
i
 of the 

EM model and as a consequence of the present 

choice of the nodal d.o.f., since bending and 

transverse shear contributions are kept separated. The 

integrals are carried out summing up the 

contributions layer-by-layer when multilayered 

structures are considered. 

 

IV. MODELLING OF LOADING AND 

DAMAGE 
In this section, the techniques used for modelling 

blast pulse loading, the failure behaviour and 

indentation are overviewed. 

A. Pulse pressure loading  

When a pressure pulse is generated, a shock 

wave is transmitted in all directions. Once it reaches 

a structure, it creates a pressure wave characterized 

by an instantaneous pressure peak followed by a 

decrease as time folds. Research studies looking for 

configurations able to reduce the detrimental effects 

of such loading have been carried out by Gupta [50], 

Gupta et al. [51], Song et al. [52], Librescu et al. [53], 

[54] and Hause and Librescu [55] considering the 

overpressure )(tPz  uniformly distributed over the 

whole panel, the  front of the explosive blast pulse 

being supposed to be far, and  its time variation 

expressed by  Friedlander‟s exponential decay 

equation in modified form as: 





























 pt

t
a

p

mz e
t

t
PtP 1)(                       (28) 

mP  being the overpressure peak, pt  the positive 

phase duration of the pulse measured from the time 

of impact and a a decay parameter that is adjusted to 

approximate the pressure curve from the results of a 

blast test. A linear variation with an initial positive 

pressure peak that decays till to end with a negative 

pressure at the end of the overpressure phase is often 

considered in the numerical simulations to represent 

the sonic boom. Triangular, rectangular, step and  

sinusoidal  pressure pulses are also often used, which 

are obtained  as a particular case of previous 

equation. When the pressure pulse is idealized in this 

way, delay to pressure wave arrival, duration of 

pressure and maximum pressure are the parameters 

involved, which  depend upon the offset distance 

between the point of explosion and the centre of the  

panel.  

As refined structural models based on a 

combination of global higher-order terms and local 

layerwise functions like the present one  were not 

considered in these studies, whether or not accurate 

modelling of layerwise and zig-zag effects can imply 

a considerable variation of results, i.e. a considerable 

mutation of best configuration able to resist to 

loading, still remains an open question that the 

present paper is aimed at contributing to discuss. To 

this purpose, sample cases presented in the  literature 

will be retaken and analysed with the present 

structural model.  

 

B. Solution of dynamic equations.  

In this paper, the dynamic equations of the 

discretized structure under associated initial 

conditions: 
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        (29) 

are solved using Newmark implicit time integration 

scheme, {D} being the vector of the nodal d.o.f. for 

the whole structure and {P(t)} the vector of nodal  

loads. Such solution scheme is chosen to solve the 

transient dynamic problem since explicit time 

integration is advantageous just when extremely 

strong geometric and material non-linearity are 

considered. This being not the present case, and since 

an explicit scheme need extremely small time steps to 

be stable, an implicit scheme was chosen. 

Accordingly, solution to Eqs.  (29) is found 

representing the velocity and the acceleration vectors 

after a time step Δt as: 

 

(30) 

 

By substituting the expressions of Eq.(30) into 

Eq. (29), a linear algebraic solving system of the type 

F(Dn+1) =0 is obtained.  In order to be unconditionally 

stable, the Newmark algorithm requires  2β ≥ γ ≥ 0.5  

(see, e.g. Ref. [28]). Aiming at meeting stability 

requirements, the calculations are carried out 

considering β=1/4 and γ=1/2, while for limiting 

convergence and rounding errors, relatively small 

time-steps are considered in this paper. 

 

C. Indentation of sandwiches with honeycomb core 

Because homogenized models cannot properly 

treat these collapsing mechanisms, a  discrete 

modelling of honeycomb core giving a detailed 

representation of the real geometry is required. As 

microbuckling and local failure of core are highly 

mesh sensitive [56], a very refined meshing is 

required and a self-contact algorithm should be used 

to prevent from interpenetration between the folds in 

the cell walls.  

In this paper a detailed, preliminary finite 

element analysis (PFEA) is carried apart once for all 

in order to compute the apparent elastic moduli of the 

core while it collapses/buckles under transverse 

compressive loading. In this phase, the present plate 

element is used to discretize the cell walls. An 

elastic-plastic behaviour [56] of the material 

constituting honeycomb walls is considered. The 

updated Lagrangian methodology is used to 

efficiently account for geometric nonlinearity.  

Once the variable apparent elastic moduli are 

computed (as the tangent moduli derived from the 

average ratio of stresses and strains) the analysis is 

carried out in homogenized form by discretizing the 

sandwich panel as a multi-layered structure whose 

properties vary with the magnitude of indentation 

load and with position, as calculated by the PFEA 

phase. In this phase, geometric nonlinearity effects 

are accounted for still using the updated Lagrangian 

method. This approach is chosen since the discrete 

modelling of honeycomb may determine overloading 

computations when simulating structures of industrial 

complexity. The objective of  numerical test will be 

that of assessing whether such modelling of the 

crushing behaviour of cells can be carried out 

separately from the homogenized analysis of the 

whole structure without a remarkable accuracy loss, 

in order to speed-up computations, as illustrated in 

Section VI.B. 

As customarily, the indentation depth, the 

contact area and the contact stress are computed 

assuming the distribution of the contact force to be 

Hertzian. The projectile is described as a rigid body, 

while the nonlinear effective stiffness of the target 

structure, as it results by the finite element model 

including the plate stiffness and the contact stiffness, 

is employed for solving the contact problem. Non-

classical feature,  the contact radius and the applied 

pressure corresponding to the load are computed at 

each load step using an iterative algorithm (see, 

Palazotto et al. [48]) that forces the top surface of the 

target, i.e. the sandwich panel,  to conform the shape 

of the impactor (in the least-squares sense) , the core 

being a soft media.  At each time step, the contact 

radius is computed within each load step varying the 

displacements till the impacted top surface conforms 

to the shape of the impactor. The contact area radius 

computed at each load step is assumed as the 

estimated contact radius R contact for the next 

increment of load, which is used to compute the 

contact force according to the Hertzian law: 

 22 /1)0()( contactRrr     

( 0)( r  if contactRr  )                       (31) 

σ(r), σ(0) being the Hertzian stress intensity at a 

distance r  from the centre coordinate and at the 

centre, respectively. 
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Initially, i.e. at the first time increment Δt, the 

contact force is assumed to reach the value F=ΔF and 

no damage is assumed to occur. The load is then 

iteratively  incremented within the time-step, the 

contact area radius computed at each load step being 

assumed as the estimated contact radius for the next 

increment of load. The contact force F and the 

vertical displacement are computed when the shape 

of the target conforms to that of the impactor. In this 

way, the impactor moves on at a distance that 

depends upon the effective nonlinear stiffness of the 

panel. The damage is computed at each new  time 

step as outlined forward, using the contact radius 

computed at the end of  the previous load-step. The 

load is then incremented and the process repeated at 

the next time step till the impactor and the 

indentation radii are in agreement, then the failure 

analysis is performed again. Because the solution 

depends on the current configuration and previous 

history, the Newton-Raphson method is used to solve 

the contact problem. The residual force Ri is 

computed employing the secant stiffness matrix, the 

load at the next iteration F(i) and the solution at the 

previous iteration q
0

(i-1), as customarily. The tangent 

stiffness matrix is used to evaluate the updated 

solution that makes the structure in equilibrium from 

the residual force balance. (see Figure 1) 

Nevertheless there is a general agreement that  

for indentation studies there is a substantial 

equivalence between static and dynamic results, 

dynamic equations were solved in order to have the 

maximal accuracy, so to ascribe eventual 

discrepancies with  reference solutions just to the 

present modelling approach. 

 

D. Damage and failure  

Stress-based criteria with a separate description 

of the various failure modes are here used to estimate 

the onset of the damage, as being simple enough and 

just requiring use of “engineering” variables they are  

suited to develop an efficient computational model. A 

mesoscale damage model is then employed for 

estimating the residual properties of the failed 

regions. 

 

1) Onset of damage 

The 3-D Hashin‟s criterion with in-situ strengths is 

chosen to predict the fibre‟s failure and the failure of 

the matrix. Tensile failure of fibres )0( 11  occurs 

if: 

  1
1 2

13

2

122

1312

2

11 













SX t
        (32) 

tX being the tensile strength of fibres, 1312S  the in-

situ shear strength of the resin and 11 , 12 , 13  the 

tensile and shear stresses acting on the fibres, while 

compressive failure )0( 11  of fibres occurs if: 

cX11 ,                                                   (33) 

cX  being the compressive strength of fibres. The 

matrix  failure under traction )0( 3322  is 

ruled by: 
2

222 33
23 22 332
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        (34) 

while under compression )0( 3322   by: 
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 
  
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        (35) 

The Choi-Chang‟s criterion is employed to predict 

the onset of delamination, which  takes place  if:  
2

1

1

1

1
2






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
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YSS
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>1        (36) 

where 
11   n

t

n YY  if 0yy , or 
11   n

c

n YY  if 

0yy , aD  is an empirical constant that is set 

after consideration of the material properties, ij is 

the average stress at the interface between the n
th

 ply 

and the n+1
th

 ply, computed as follows: 

dt
h

n

n

t

t

ij

n

n

ij 




 

1
1

1 1
                                      (37) 

The subscript ‘i‟ stands for in situ, while ‘t‟ and 

„c‟ stand for traction and compression, respectively. 

This criterion disregards the transverse interlaminar 

stress 33 , but numerical tests in literature have 

shown that such omission is not relevant in the 

majority of cases, thus accurate estimations are 

usually obtained.  

Crushing failure of with honeycomb core is 

predicted using the criteria by Besant et al. [57], Lee 

and Tsotsis [58] and Petras and Sutcliffe [59], in 

order to have the possibility of comparing different 

rules for this critical failure mode. The criterion by 

Besant et al. [57] uses the following expression:  



Ugo Icardi Int. Journal of Engineering Research and Applications                                www.ijera.com 

ISSN : 2248-9622, Vol. 5, Issue 1( Part 3), January 2015, pp.25-56 

 www.ijera.com                                                                                                                                34 | P a g e  

core

n

lu

yz

n

lu

xz

n

cu

zz e





































        (38) 

to predicts failure, which occurs when 1coree , 

cu  and lu  being the core strengths in compression 

and transverse shear. Numerical test in literature have 

shown that varying the exponent from 1 to 2 no 

remarkable effects appears on the results of 

sandwiches with laminated faces, but n = 1,5 best 

fitted the experimental results, thus this value was 

chosen. The criterion by Lee and Tsotsis [58] predicts 

indentation failure to occur at the loading magnitude 

at which one of these inequalities is verified: 

1,1,1 
y

yz

x

xz

c

zz

SSZ


                       (39) 

cZ , 
xS , 

yS being the compressive yield strength 

and the out-of-plane shear strengths, respectively.  

The criterion by Petras and Sutcliffe [59] predicts 

indentation failure when: 

1
)(





SZ

yzxz

c

zz


             

                       (40) 

S  being the transverse shear strength. 

 

2) Residual properties 

The mesoscale damage model by Ladevèze et al. 

[47] is chosen for accurately computing the residual 

properties of failed structures, considering that this 

model and the other ones of the same class are known 

for being accurate and computationally more 

advantageous than structural scale models assuming 

cracks as hard discontinuities. 

The discretely damaged medium is replaced with 

a continuous homogeneous medium, which is 

equivalent from an energy standpoint, whose strain 

energy expression  incorporates damage indicators 

that are  computed as the homogenized result of 

damage micro-models and have an intrinsic meaning. 

These damage indicators establish the link with the 

micro-degradation variables, namely they provide the 

relations giving the new elastic properties of the 

homogenized damaged model. 

The homogenized potential energy density of a 

single layer assumed as the generic ply 
S
 is expressed 

as:  

                                                      
                                                                               (41) 

13231222 ,,, IIII  and 33I  being the five damage 

indicators defined as the integral of the strain energy 

of the elementary cell for each basic residual problem 

under the five possible elementary loads in the 

directions 22, 12, 23, 13,33. In the former equation 

][ 1M , ][ 2M , ][ 3M represent  operators that 

depend on the material properties, S  is the 

deformation, while  . represents the positive part 

operator. Eq. (41) features an equivalent state of 

damage on the mesoscale that is approximately 

intrinsic for a given state of micro-degradation. 

Homogenization of the interface 
j  leads to the 

following expression of the potential energy density: 

                     

                    (42) 

1

~
k , 2

~
k  and 

3

~
k  being the elastic stiffness coefficients 

of the interface, 
1I , 

2I  and 
3I  the three damage 

indicators and j  the deformation. 

It is remarked that equations (41) and (42) are 

derived making the potential energy stored in the 

plies and in the interfaces the same as in the 

micromodel. In this way, a continuum damage model 

is constructed that is quasi-equivalent from an energy 

standpoint to the damage micro-model.  

Solution is obtained as the sum of the solution of 

a problem P
~

 in which damage is removed and the 

solution of a residual problem P  where a residual 

stress is applied correcting the undamaged solution 

around each damaged area.  

In the present paper,  the residual problems for 

determining the expressions of damage indicators are 

solved numerically via 3D FEA discretization [60]. 

Once the damage indicators are computed, the 

expression of the strain energy is modified according 

to Eqs. (41), (42). Stresses are evaluated, then the 

failure criteria described in section IV.D.1 are used 

(at each time step in dynamic problems) to determine 

actual failed regions. In this way, the failure criteria 

are applied at any time step considering the materials 

damaged as in the reality.  

The progressive failure analysis is carried out at 

the macroscopic level extending the pre-existing 

damage computed at the previous step to the points 

where the ultimate condition is reached, instead of  
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guessing factors for degrading the elastic properties 

of the failed regions like with the ply-discount theory. 

 

V. VARIABLE-STIFFNESS COMPOSITES 
Distributions of stiffness properties that 

minimize the energy absorbed involving out-of-plane 

strengths and, contemporaneously, that maximize the 

one absorbed by modes involving in-plane strengths 

are considered.  

Such distributions are obtained once for all in 

closed or numerical form as variable ply angle 

distributions by solving the Euler-Lagrange equations 

obtained imposing extremal the in-plane, bending and 

out-of-plane shear contributions to strain energy 

under spatial variation of the stiffness properties [39], 

[41]. 

These candidate solutions  represent in-plane 

variable-stiffness distributions making maximal or 

minimal the bending stiffness and increasing or 

decreasing interlaminar stresses, respectively. As a 

result, OPTI acts as an energy “tuning” procedure 

that transfer the incoming energy from out-of-plane 

critical modes to non-critical membrane ones (since 

laminates and sandwiches have larger strength and 

stiffness in the in-plane direction than in the 

thickness one), preserving a high bending stiffness. 

This non-classical optimization technique consists of 

the following steps. 

First, the strain energy of the structural model is 

recast in a form that puts in evidence all terms 

MN function  of elastic properties and of 

coefficients containing powers of z , which, once 

integrated across the thickness, define the stiffness 

properties of the model. 

 i|(.) =

     
1

1

k

k

z Tnl

ij MN ij MNk z
d dz 


 

             (43) 

Then, the first variation of former equation under 

variation of the stiffness properties is constructed, its 

vanishing enforced and the contributions of each 

functional d.o.f. are split apart (integration by parts) 

since the stationary conditions must hold 

irrespectively of the displacements 

  H D d 


                           (44) 

[H] being a matrix containing the derivatives of 

the stiffness coefficients and {δD} the column vector 

collecting the first variation of functional d.o.f.  The 

contribution multiplying terms  δw
(0)

 is here referred 

as the strain energy due to bending, while the ones 

multiplying 
 0

x , 
 0

y  are referred as the strain 

energy due to transverse shears.  Since contributions 

multiplying 
0u  and 

0v  are disregarded in the 

extremization process, as they represent in-plane 

uninteresting constraints a transfer of energy to in-

plane mode being non-critical,  just variations 
0w , 

0

x , 
0

y  require a simultaneous solution:   

3 4 50; 0; 0j j jH H H               (45) 

The spatial stiffness property distributions that 

make extremal the bending and transverse shear 

energy contributions are obtained solving the system 

of partial differential equations represented by (45) in 

terms of the stiffness properties, then finding 

appropriate ply-angle variations in closed or 

numerical form. The form of solutions is determined 

by the order of spatial derivatives of the stiffness 

coefficients in x, y. The present structural model 

gives rise to following variation of stiffness 

coefficients as general solution: 

   1 1
1 2

1 2

1

x y
n n

ij

P
px pyij ij

p x i y

p

Q

A e k A e k
  





     
      


 (46) 

(ij=11, 12, 13, 16, 22, 23, 26, 36, 44, 45, 55, 66). The 

unknown coefficients 
1

ij

pA , 2

ij

iA , p, 
1 n

x , 
1 n

y , kx, ky 

are determined by enforcing conditions that 

determine whether the solution minimises or 

maximises the strain energy components, such as  the 

stiffness at the bounds of the domain and a convex or 

a concave shape, as well as the thermodynamic 

constraints since the solution should be physically 

consistent. 

Differently to former applications of the 

technique, here also the stiffness coefficients, Q44, 

Q45 and Q55 are assumed to vary. However,  their 

variation is very limited compared to the other 

coefficients as it will be shown forward, thus 

considering them as constants does not determine 

significant errors. If the properties of core are 

optimized across the thickness, the form of solutions 

is determined by the order of derivation in z and still 

has a similar general form like (46). 

In the numerical applications, sub-optimal 

polynomial distributions 

 



G

g

g

g

g

gij yBxAQ
1

will be considered, 

because they can be easily obtained with currently 

available automated fibre-placement manufacturing  

technologies. The numerical results will show how 

such sub-optimal stiffness distributions can be 

effective. 

Three classes of variation of the stiffness 

properties over the surface of each single ply of this 

type will be considered, which are here  named OPTI 

A, OPTI B and OPTI C. From the practical 

viewpoint, OPTI A maximizes the bending stiffness 

at the centre of the ply and makes it minimum at the 

edge. The in-plane variations of the most significant 

stiffness coefficients Qij for this case are reported in 
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Figure 2, from which it results that Q11 significantly 

increases at the centre of the ply, while it decreases at 

the edges. On the contrary, Q12, that represents the 

local in-plane shear stiffness is higher at bounds of 

the ply, while at the centre it remains almost 

unchanged with respect to the straight fibre case. This 

variation  is also the same of the coefficient Q22. 

The coupled effects of the distributions of Q11, 

Q12 and Q22 produce an increase of the bending 

stiffness at the centre of the ply and a decrease at the 

bounds, while the shear stiffness does the opposite. 

OPTI B also obtains a maximum bending 

stiffness at the centre of the ply and a low one at the 

edges, but the sign of the concavity imposed at the 

edge of the ply is different with respect to OPTI A. 

The global behaviour is roughly the same as for OPTI 

A, but a sharper variation is shown. Please notice that 

in this case the overall mean bending stiffness is 

almost similar to that of a straight fibre layer, thus  

OPTI B determines a lower increase of the bending 

stiffness with respect to OPTI A. 

OPTI C obtains a maximum bending stiffness at 

the edge of the ply and a minimum one at the centre. 

In this case, the in-plane distribution Q11 is higher at 

the bounds than at the centre of the ply, while Q12 and 

Q22 behave in the opposite way and Q44 remains 

almost constant and similar to that of the straight 

fibre case. From the practical viewpoint  OPTI C 

determines a transfer of energy from bending in the 

x-direction, to bending in the y-direction and to in-

plane shear once incorporated into a laminate.  

It could be observed that  distributions OPTI A, 

OPTI B and  OPTI C are similar to those obtained by 

other researchers using different optimization 

techniques (see, e.g. Refs. [61] and [62]). It will be 

shown that a suited combination of plies with these 

variable properties will consistently improve the 

structural performances of laminates and sandwiches, 

because the bending stiffness is kept maximal, while 

the deleterious concentrations of interlaminar stresses 

will be recovered. Of course, this latter effect is of 

primary importance by the viewpoint of durability 

and structural integrity, as the damage and failure 

mechanisms are dominated by the magnitude of 

interlaminar stresses. 

 

VI. NUMERICAL APPLICATIONS  
Accuracy and efficiency of the present structural 

model are assessed considering sample test cases of 

laminated and sandwich-like structures taken from 

the literature, whose exact 3D solutions are available. 

These structures are chosen due to their intricate 

through-the-thickness displacement and stress 

distributions consequent to extremely high length-to-

thickness ratios, strong anisotropy or distinctly 

different/ abruptly changing asymmetric  properties 

of constituent layers.  

In details, applications will be presented to  

indentation of sandwiches with faces having 

distinctly different elastic properties, to [0°/90°/0°] 

simply-supported, thick cross-ply plates and 

[90°/0°/90°/0°], [0°/90°/0°/0°] laminated and 

sandwich beams in cylindrical bending (either  

undamaged or damaged) under sinusoidal transverse 

distributed loading, or subjected to pressure pulse 

loading and incorporating variable-stiffness plies, as 

discussed in section V. 

Because numerical tests have shown that  a 

reduced order of expansion of displacements (3)  and 

an increased number of intermediate points at which 

equilibrium conditions (8) are enforced  give better 

results,  in all the numerical applications discussed 

next, for each physical layer a computational layers 

will be considered in the finite element analysis. It is 

reminded that with the present structural model 

subdivision into computational layers does not mean 

an increased number of unknowns, the functional 

d.o.f. of the model and the nodal d.o.f. being fixed, 

nevertheless the representation can be refined across 

the thickness.  

 

A. Simply supported laminated and sandwich 

beams and plates 

First extremely thick, simply supported sandwich 

beams and plates loaded by a sinusoidal transverse 

loading are considered. 

 

1) Interlaminar stresses in [0°/90°/0°] plate under 

sinusoidal loading 

The first case is that of a simply supported 

[0°/90°/0°] cross-ply plate. The constituent material 

has the following normalized mechanical properties: 

EL/ET=25; GLT/ET=0.5; GTT/ET=0.2; υLT=0.25. 

Though unrealistic by the practical viewpoint, an 

overall  length to thickness ratio of 4 is assumed, as it 

represent a severe test case. For this reason such case 

is often used by researchers for assessing accuracy of 

models. Simply supported edges and transversely 

distributed bi-sinusoidal loading acting on the top 

surface of the plate are considered, because under 

these conditions the exact 3D elasticity solution was 

found by  Pagano [63].  The results for this case are 

reported in Figure 3 in normalized form as: 

0

0

0, ,
2

,0,
2

y

xz

xz

x
yz

yz

L
z

p S

L
z

p S









 
 
 

 
 
 

                      (47) 

In order to contain the length of the paper, it was 

chosen to represent just the interlaminar stresses 

because they are more difficult to capture than the in-
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plane stresses and the displacements, as shown in the 

literature. In effects, many models can accurately 

predicts them  only after integrating local differential 

equilibrium equations, not from constitutive 

equations. 

Results for the other stresses and for the 

displacements will be reported and discussed next 

considering other test cases.  

The results of Figure 3 show the capability of the 

finite element model to accurately capture shear 

stresses from constitutive equations with a reasonably 

refined, uniform  meshing of  400 elements and in a 

rather efficient way. Indeed, the home-made 

computer code requires just 50 seconds to perform 

the analysis on a laptop computer with a 1800 GHz 

double-core processor and 2.96 GB RAM. 

It could be noticed that results can be further 

refined till to become undistinguishable with respect 

to the exact solution without refining meshing, but 

instead by increasing the number of computational 

layers, as shown in Figure 3.  

It is reminded that such refinement does not 

change the number of unknowns, it just imply a little 

increase of about 20% of the processing time. 

 

2) Cross-ply and sandwich-like laminates in 

cylindrical bending   

Table 1 reports a comparison of the results by the 

present finite element model with analytical solutions 

by other researchers [14] and with the exact elasticity 

solution [63], for several different cross-ply schemes 

and a sandwich-like structure. 

The results reported in the table are the in-plane 

and out-of-plane displacements and the in-plane 

stresses at the points conventionally adopted for 

assessing structural models, as they were not 

considered in the previous test (VI.A.1). These 

quantities are important, though they do not intervene 

in the most critical failure mechanisms, because they 

directly represent the capability of the model to 

accurately predict the basic quantities. In the table are 

also reported the processing times by the present 

finite element model for each case (results under 

curly  brackets).  

Such results have been obtained considering a 

uniform meshing of the beams with 150 elements 

(see inset in Figure 4).   

 

Case A. In the case of the [90°/0°/90°/0°] laminate, 

the constituent material MAT-p has the following 

mechanical properties: E1 =25 GPa; E2 = E3 =1 GPa;  

G12= G13= 0.5; G23=0.2; υ12= υ13= υ23= 0.25. All the 

layers have thickness h/4, where h is the total 

thickness of the beam. Table 1 reports for different 

length-to-thickness ratios the comparison between the 

stress and displacement fields of the exact solution, 

those computed by the present element and those 

computed by Gherlone [14] using two first order 

theories adopting different zig-zag functions. 

Namely, the solution indicated as Gherlone PHYS 

employs a physically based zig-zag function, while 

that indicated as Gherlone MUR is obtained using a 

geometrically based zig-zag function. All the 

quantities are normalized as follows: 
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The results shows the accuracy of the present 

finite element model even with a not extremely 

refined meshing, and more in general they show that 

using physically based zig-zag functions accuracy is 

dramatically better than for model using 

geometrically based one.  

 

Case B. Same constituent material MAT-p are used 

for the [0°/90°/0°/0°] laminate. Because the thickness 

ratios of the layers currently are [0.1h/ 0.3h/ 0.35h/ 

0.25h], the structure is strongly asymmetric and 

consequently the stress and displacement fields are 

asymmetric too. Different length-to-thickness ratios 

are considered also in this case. The results for this 

case still confirm the accuracy of the present finite 

element model with a rather coarse meshing and the 

improved accuracy achieved using a  physically 

based zig-zag function, as shown by the comparison 

with its geometrically based counterpart by the 

results reported from [14]. 

 

Case C. The [0°/90°] lay-up is extensively used by 

researchers for assessing models since it is not a case 

easy to solve for the models. In effects,  the correct 

evaluation of the stress and displacement fields for 

this structure is not a so trivial issue due to the strong 

unsymmetry of the lay-up and the extremely high 

thickness. Such effects require a refined modeling in 

order to accurately predict out-of-plane stresses from 

constitutive equations.  

The present model and related element can easily 

treat this case because the representation can be 

refined across the thickness as desired without 

consistently increasing the computational effort and 

the stress-free boundary conditions at the upper and 

lower faces can be accounted for. The constituent 

layers still have the following mechanical properties: 

EL/ET=25; GLT/ET=0.5; GTT/ET=0.2; υLT=0.25. Figure 

4 reports the stress and displacement field for this 
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case by Pagano [63] and by the present model 

normalised as follows:
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As a closure for this case it is remarked that the 

present finite element model is capable to reproduce 

with a high fidelity any quantity from the constitutive 

equations with a rather low computational effort 

(18.5 s) using a reasonably refined meshing. In 

particular, it is shown its capability to capture the 

strongly asymmetric variations of stresses, as well as 

the boundary conditions at the upper and lower faces.  

 

Case D. The fourth structure considered is a 

sandwich-like beam, ideally made stacking three 

layers of MAT-p with altered properties. Namely, the 

mechanical properties of the second layer 

representing the core are reduced of a 10
5
 factor, 

while those of the third layer representing the upper 

face starting from the bottom are reduced of the 20%. 

The thickness ratios of the constituent layers are 

[0.1h /0.7h /0.2h]. Due to the mechanical properties 

of the constituent material as well as to the stacking 

sequence, the laminate is again strongly asymmetric, 

thus it represents a severe test for the present 

element. Different length-to-thickness ratios are 

considered also for this case. It is shown again that 

the present element can obtain results as accurate as 

the exact 3D solution, as well as that the results 

obtained using a physically-based zig-zag function 

are significantly more accurate than those obtained 

using the Murakami‟s geometrically-based zig-zag 

function.  

  

3) Undamaged and damaged sandwiches      

The results presented next pertain sandwiches 

with honeycomb core, which either have undamaged 

or damaged properties, as displacement and stress 

fields are rather intricate and thus difficult to capture 

in the simulations. 

Simply-supported edges and a sinusoidal 

distributed transverse loading are still considered, 

because the exact 3D solution is available for these 

cases. Results still refers to a length-to-thickness ratio 

4. 

Using the present element, the cellular structure 

of core could be discretized into details, but this is 

not currently done because the results used for 

comparisons have been determined considering the 

sandwich beam as a sandwich-like, multi-layered, 

homogenized structure where the core is described as 

a quite compliant intermediate thick layer and faces 

as thin, stiff layers. Instead, a detailed description of 

the cellular structure will be considered next studying 

indentation. 

 

Case A. Four constituent materials are considered, 

whose mechanical properties are: MAT 1: E1=E3=1 

GPa, G13=0.2 GPa, υ13=0.25; MAT 2: E1=33 GPa, 

E3=1 GPa, G13=0.8 GPa, υ13=0.25; MAT 3: E1=25 

GPa, E3=1 GPa, G13=0.5 GPa, υ13=0.25; MAT 4: 

E1=E3=0.05 GPa, G13=0.0217 GPa, υ13=0.15. 

According to Aitharaju and Averill [64] who 

formerly studied the case, the lay-up is (Mat 

1/2/3/1/3/4)s with the following thickness ratios of 

layers (0.010/0.025/0.015/0.020/0.030/0.4)s. The face 

layers are made of three different materials indicated 

as MAT1 to MAT3, while the core is made of 

material MAT4. Compared each-others,  the 

constituent materials have the following 

characteristics. Of course, the face layers are stiff, as 

customarily for a sandwich structures, while core is a 

light material that  provides the necessary transverse 

shear  stiffness. In details, MAT1 is rather weaker in 

tension-compression and shear, MAT2 is stiff in 

tension-compression and shear, while MAT3 is stiff 

in tension-compression, but rather compliant in shear. 

Being the core, MAT4 is compliant in tension-

compression and rather compliant in shear. 

Reduced stiffness properties of core are 

considered, which represent the degradation due to 

failure or damage accumulation, because they give 

rise to strongly steep-varying distributions, as shown 

by computing exact solutions with the technique [65] 

considering reduced elastic properties. In the present 

case, a factor 10
-2 

 is considered for simulating the 

complete failure of the core under transverse shear 

(only G13 modulus of MAT4 reduced by factor 10
-2

). 

The damage is assumed to be spread over the entire 

length of the sandwich beam, in order to have the 

possibility of finding the exact solution with the 

technique [63]. 

To contain the number of figures, hereon only 

partial sets of results are presented. Figure 5 reports 

the comparison between the exact solution [65] and 

the results by the present element, normalised as 

follows: 
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The in-plane stress is omitted since it can be 

quite accurately captured even by equivalent single-

layer models. As evidenced by the results, the 

variation of the transverse normal stress is correctly 

represented by the present finite element model. It 

could be noticed that in this case z  becomes as 

important as the transverse shear stress, the core 

being a rather “soft” material in compression under 

transverse loading. This implies that the assumption 

of a constant transverse displacement is 

inappropriate. The comparison with the exact 

solution having demonstrated that the representation 

of z  is correct,  the variation of the transverse 

displacement necessary to construct such stress  

being automatically proven to be correct is not 

reported in order to contain the number of figures.  

Also the in-plane displacement exhibits an 

intricate variation across the thickness that it is 

difficult to capture in the simulations. As a 

consequence, a refinement is required at the core 

interfaces which can be efficiently carried out by the 

present structural model without resulting neither into 

a larger memory storage occupation nor into a 

consistent increase of processing time, by increasing 

the number of computational subdivisions across the 

thickness in Eqs. (3)-(8). 

 

Case B. As a further case with abruptly changing 

material properties, the sandwich with unsymmetric 

face layer properties and thus severe variation of 

stress gradients analysed  by Brischetto et al. in [66] 

is now considered. The case examined is that of a 

simply supported, rectangular (Ly/Lx=3) sandwich 

plate with a length to thickness ratio of 4 undergoing 

bi-sinusoidal distributed  loading. 

The two skins are made of different material, 

their mechanical properties being: Els/Eus=5/4, 

Els/Ec=10
5
, νls= νus=νc=ν= 0.34, where the subscript ls 

stands for lower skin, while us stands for upper skin, 

and c stands for core. Also the thickness of the layers 

are different being respectively hls =h/10; hus =2h/10; 

hc =7h/10 with respect to the thickness h of the plate. 

As a consequence of the high thickness ratio and 

mainly of these asymmetrical, distinctly different 

geometric and material properties, strong layerwise 

effects rise making this sample case a severe test for 

the model.  

The results for this case are reported in Figure 6. 

A comparison is presented with the exact solution  

shown in [66]  and the numerical results predicted by 

the present finite element model, by the numerical 

model  considered in [66], which on the contrary of 

the present model is based upon use of Murakami‟s 

zig-zag function and a seventh order through-the-

thickness representation.  According to Ref. [66], 

stress and displacement are normalised as follows: 
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The results show that the present physically-

based zig-zag model provides much more accurate 

results for the variation of the in-plane displacement 

across the thickness and only a little more accurate 

prediction of the shear stress, the reference model 

being already accurate for this quantity. As a 

concluding consideration, it can be seen that also for 

this case the present model gives results always in a 

very good agreement with the exact 3D solution at 

any point with  still a reasonably refined in-plane 

meshing and low computational cost.  

 

B. Indentation of sandwich plates 

The behaviour of the “soft” material constituting 

the core needs to be accurately described, because a 

large amount of energy is absorbed through various 

folds and failure modes of the core structure. A 

micromechanics model with a very fine meshing was 

compared in [56] to a homogenized finite element 

model and to a homogenized discrete/finite element 

model. This latter model was shown to be the most 

appropriate for simulation of extensive core crushing, 

while it was observed that the homogenized model 

cannot always be successfully used.  

Accordingly, in the present paper it was chosen 

to not explicitly model the honeycomb core and the 

faces using shell elements, but in order to save costs 

it was supposed that the analysis can be carried out 

using an homogenized model whose variable material 

properties with the loading magnitude are provided 

by the micromechanics model  applied to a local  

analysis of some adjacent cell structures, as already 

mentioned above. So, a detailed, preliminary finite 

element analysis by the plate element of section (III)  

is carried apart once for all in order to describe the 

load-displacement curve of the core while it 

collapses/buckles under transverse compressive 

loading, the aim being to compute the apparent 

elastic moduli corresponding to each magnitude of 

the load. This analysis is carried out generating the 
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geometrical model of the sandwich structure in the 

finite element program RADIOSS
TM

 . Then, results 

are post-processed with the energy updating 

technique of  section (III), in order to make them 

compatible with the OM model. In this context it 

should be noticed that the edges where cells are 

bonded each-others, the walls and the adhesive form 

a three-layer laminate that is appropriately treated by 

the OM model.  Criteria of section (IV.D.1.) and the 

mesoscale model of section (IV.D.2.)  are used in this 

phase to predict debonding failure at cell interfaces 

and fracture. Once the variable apparent elastic 

moduli are computed with the 3D model, the analysis 

is carried out in homogenized two-dimensional way 

just with an in-plane discretization by the elements of 

section (III). Namely, sandwiches are considered as 

laminated plates made of an equivalent material 

whose properties vary with the magnitude of the  

indentation load and with position over the plate. The 

updated Lagrangian method is still  used  to account 

for geometric nonlinearity effects. 

The numerical result reported in the following 

section (VI.B.1) are presented in order to assess the 

correct implementation of the micromechanics 3D 

model of the cellular structure, those of  section 

(VI.B.2) with the purpose to assess whether the 

collapse crushing failure analysis of sandwiches can 

be carried out in a homogenized 2D way as a plate 

whose variable properties are computed  using the 3D 

model. 

 

1) Three-dimensional model of crushing 

It is now analysed the crushing behaviour of an 

aluminium alloy, honeycomb core. The  square 

sandwich panel  studied by Aminanda et al. [42] 

using a discrete modelling of the cellular structure is 

considered. The sample case treated has a cell size is 

of 6 mm, a cell wall thickness of 0,12 mm and a side 

length of the panel of  25 mm. The  collapse analysis 

of core was carried out discretizing each cell wall 

into 150 plate elements, 25 elements being used in 

the direction across the thickness of the panel and 6 

elements being used in the transverse direction, as 

shown in the inset of Figure 7.  

Numerical results of Figure 7 show that once 

reached a peak of the indenting force, a sharp drop is 

presented because the cell walls rapidly buckle and 

cell folding starts, then the force is essentially 

transmitted to vertical edges. 

Due to the progressive vertical edge deformation, 

after an initial linear elastic and stiff response, during 

this phase the force reaches a plateau and finally the 

diagram shows the condensation phase, where the 

stiffness restarts to increase. As it can be seen, the 

numerical results behave in accordance with the 

experiments [42], thus it is proven that  the 

preliminary analysis of the collapse behaviour carried 

out by a discrete modelling of the cell walls is 

appropriately made using the plate element of section 

(III). The constituent material of cell walls being 

isotropic, all continuity functions (9) automatically 

vanish. Cell walls being very thin, the expansion 

order of the representation was limited to the first 

order contribution (2).  

 

2) Two-dimensional overall model        

Case A. It is now considered the sandwich square 

plate analysed by Flores-Johnson and Li [67] with a 

side-length of 100 mm. The plate has laminated 

[0°/90°] faces in Toho Tenax carbon fibre HTA plain 

weave fabric 5131, having the following mechanical 

properties E11= E22=33,38 GPa, υ12=0,051, σ1T= 

σ2T=124 MPa, σ1T= σ2T=684 MPa. The thickness of 

the faces is 0.416 mm. 

Different constituent materials have been 

considered for the Rohacell foam cores: 51WF, 

71WF, 110WF and 200WF. The mechanical 

properties of the foams are as follows: 51WF: σC= 

0.8 MPa, σT= 1.6 MPa, E= 75 MPa, G= 24 MPa; 

71WF: σC= 1.7 MPa, σT= 2.2 MPa, E= 105 MPa, G= 

42 MPa; 110WF: σC= 3.6 MPa, σT= 3.7 MPa, E= 180 

MPa, G= 70 MPa; 200WF σC= 9 MPa, σT= 6.8 MPa, 

E= 350 MPa, G= 150 MPa. The thickness of the core 

is 10 mm thick. The indentation is carried out 

considering a hemi-spherical indenter with 20 mm 

diameter. 

A preliminary 3D analysis of the crushing 

collapse was carried out as outlined in the former 

section (VI.B.1). Then, the collapse analysis was 

carried out in 2D form. The results show a good 

agreement of these 2D simulation with the 

experimental results by Flores-Johnson and Li [67] 

everywhere except that for the strong oscillations of 

load- displacement curves at high deformation ratios. 

Excluding these regions,  it could be noticed that the 

present 2D simulation is able to precisely capture the 

behaviour with, of course, a much lower 

computational effort than  the 3D analysis, which 

however still shows some discrepancies where the 

reference experimental results oscillates.  Please note 

that, in this case, 9994 elements have been 

considered during the 2D analysis, as shown by the 

insets reported in Figure 8. The computational times 

of this and subsequent case was seen to vary from 

520 to 640 s. 

 

Case B. To understand whether discrepancies with 

experiments repeats with other cases, the attention is 

now focused on the 139.7x139.7 mm sandwich panel 

with honeycomb core with different densities, studied 

by McQuigg [67]. Two sandwich panels are 

considered. The sample test case  named  in [67] as 3 

PCF-XX has a Nomex
TM

 honeycomb core with 

density of 48.1 kg/m
3
, 3.175 mm nominal cell size 

and 0.018 mm foil thickness, while those named 6 

PCF-XX have Nomex
TM

 honeycomb core with 
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density of 96.11 kg/m
3
, 3.175 mm nominal cell size 

and 0.038 mm foil thickness, respectively, while  the 

thickness of the core is 12.7mm in both cases. 

Both the panels have the skins made of two plies 

each of style 6781 woven S2-glass fabric cloth with 

35% epoxy resin MTM45-1 content. The faces are 

0.508 mm thick and their stacking sequence is 

[0°/45°]. In the warp direction strength and moduli 

are 561.65 MPa and 29 GPa, respectively, for tensile 

loading, and 575.23 MPa and 29 GPa, respectively, 

for compressive loading. In the fill direction strength 

and moduli are 555 MPa and 28 GPa, respectively, 

for compressive loading, and 476.22 MPa and 27.7 

GPa, respectively, for tensile loading. The in-plane 

shear strength and modulus are 37.58 MPa and 3.79 

GPa, respectively. The in-plane Poisson's ratio is 

0.138. The indenter is a hemi-spherical indenter with 

12,7 mm diameter and the panels are clamped on all 

four edges. In Figure 9 it is reported the comparison 

between the numerical results by the present element 

and the experimental ones by McQuigg [67]. In this 

case, both the analyses are carried out considering 

4900 elements as shown by the insets reported in 

Figure 9.  The comparison with [67] shows that 

rather accurate results are obtained, though the 

oscillations of the curves predicted  by the present 

simulations are not perfectly replicating those of 

experiments in some regions. As discrepancies are 

rather small and similar to those shown  in the 

literature, e.g. in [42] and [56],  it is believed that all 

the essential  phenomena are correctly described with 

the present modelling. It is left to a future study the 

investigation of the reasons of such discrepancies and 

whether a refined subdivision of the load-step  used 

to carry out the analysis could improve accuracy.  

Being at least as accurate as the other approaches 

presented in literature, the present modelling 

approach represents a good alternative to existing 

techniques for treating large sandwich structures of 

industrial interest keeping into account the local 

phenomena in the cellular structure with an 

affordable cost. 

 

C. Laminates undergoing pulse pressure loading    

Simply-supported plates subjected to blast pulse 

pressure loading are now considered. Initially, a 

laminated [0°/90°/0°] plate with a thickness ratio 

S=L/h of 4 and the layers of equal thickness (i.e., [h/3 

/ h/3 / h/3]) is considered, whose constituent layers 

have the  following properties: EL/ET=25; 

GLT/ET=0.5; GTT/ET=0.2; υLT=0.25. Then, layers with 

such  straight-fibre orientation and so spatially 

uniform properties are replaced by variable-stiffness 

counterparts with curvilinear paths of fibres, as 

discussed in section V.  

The lay-ups considered are of the following type: 

[0°/OPTI/90°/OPTI/0°], where OPTI represents a 

specific type of fibre angle variation. Several  kinds 

of variable-stiffness distributions are considered, 

which are named OPTI 1 to OPTI 7. Each of these 

distributions is made of layers of type OPTI A, OPTI 

B or OPTI C, whose features are discussed in details 

in section V.  

In details, OPTI 1 just considers layers of type 

OPTI C, OPTI 2 of type OPTI A,  OPTI 3 layers of 

types OPTI C and OPTI A, OPTI 4 the opposite 

scheme, i.e. layers OPTI A - OPTI C,  OPTI 5 layers 

of type OPTI B, while OPTI 6  is made of layers of 

types OPTI C and OPTI B and  OPTI 7 does the 

opposite layers of types OPTI B  and OPTI C being 

considered. 

Figure 10 compares the deflection at the centre 

of the panel for all these lay-ups, as time unfolds 

under a triangular pulse loading [53] - [55], to the 

reference solution with uniform stiffness properties. 

The pressure is assumed constant over the panel, as 

in the cited references.  In the numerical applications 

a density of  16.3136 Kg/m
3
 was considered and 

EL=E1= 0.138 GPa, assuming as side lengths Lx= Ly= 

0.6096 m.  

Numerical, preliminary test have been carried 

out in order to assess the effects of the length-to-

thickness ratio, obtaining as a result that the lower is 

this ratio, thus the higher are the layerwise effects, 

the lower is the amplitude of the oscillation and the 

higher is the frequency, as expected. Since a ratio of 

4 is considered here, the deflection is much due to 

transverse shear than to bending, thus this case is 

suited for showing the effects of layers with variable-

fibre orientation outside the usual range of thin 

plates, where their effectiveness on limiting bending 

have been already well focused. 

Results on interlaminar  stresses here not 

reported have shown that incorporation of OPTI plies 

considerably reduces the interlaminar stresses, 

without significant stiffness loss, confirming the 

result obtained in closed form  in [39], [41], since  

path of fibres with variable orientation that try to 

minimize the bending component of the strain energy 

are coupled with ones that minimize the shear 

component of the strain energy. The best lay-ups by 

the viewpoint of deflections are OPTI 4 and OPTI 7, 

which are characterized by the simultaneous presence 

of plies that effectively minimize the bending 

component of the strain energy and of plies that 

minimize the shear component of the strain energy.  

The numerical results show that there are lay-ups 

among those considered with a lower amplitude of 

oscillations than other ones as time unfolds. Besides 

this fundamental effect by the practical viewpoint, 

the results show that due to low differences in the 

bending stiffness, the density being considered 

uniform as no variation is considered in the fibre 

volume fraction of solutions OPTI with respect to the 

straight-fibre case, small variation in the frequency, 



Ugo Icardi Int. Journal of Engineering Research and Applications                                www.ijera.com 

ISSN : 2248-9622, Vol. 5, Issue 1( Part 3), January 2015, pp.25-56 

 www.ijera.com                                                                                                                                42 | P a g e  

or wave length occurs for the configurations 

examined. 

The results being similar to those obtained in 

closed form in [39], [41], it is believed that present 

finite element model gave reasonable results also for 

the cases having no exact solutions available for 

comparisons. 

 

D. Sandwich with local optimization 

As a further test, the case with fibre paths that 

are interfaced with an angle that suddenly varies is 

considered in order to show whether the finite 

element obtains smooth results by virtue of the terms 

(13), (13a)  incorporated in the structural model. In 

this case, a sandwich beam obtained interfacing face 

plies having variable-stiffness properties resulting 

from fibre paths that are differently oriented at the 

transition line is considered (see Figure 11a). It can 

be seen that the fibre distribution obtained in this way 

is characterized by an orientation angle that suddenly 

changes at the two interfaces x/ Lx = 1/3 and x/ Lx 

=2/3, while it smoothly varies elsewhere. In this case, 

the optimized distributions presented in Figure 2 are 

coupled into a single optimized layer, as shown in 

Figure 11a.  

The results reported for this case are the 

variation of in-plane stresses moving in in-plane 

direction and of the transverse shear stress across the 

thickness under sinusoidal loading and for simply-

supported edges. 

The beam is characterized by a thickness ratio S 

of 10 and the properties of the un-optimized materials 

are: MAT FACE: E1=25 GPa, E3=1 GPa, G13=0.5 

GPa, υ13=0.25; MAT CORE: E1=E3=0.05 GPa, 

G13=0.0217 GPa, υ13=0.15. The thickness of the 

layers is (0.2/0.3)s, while the lay-up considered is 

reported in Figure 11a.  

As a consequence of the fibre distribution 

adopted, the in-plane stress and its gradient become 

discontinuous at the two interfaces, as shown by the 

dashed line of Figure 11 if their continuity is not 

enforced crossing the interface. Through an 

appropriate definition of contributions (13), (13a) 

continuity is restored.  It is worthwhile to mention 

that in this case, it is sufficient to consider continuity 

functions up to the third order in x in order to restore 

the in-plane continuity of the membrane stress and 

stress gradient, the difference between stiffness 

coefficients at the interfaces being rather mild. 

Here the purpose is to show the capability of the 

finite element  model to achieve continuous in-plane 

stress distributions across the interfaces of regions 

where the elastic properties suddenly change. This 

has a practical meaning because patches are used for 

repairing damage, or as a result of optimization 

studies aimed at achieving specific local properties 

when curvilinear paths of fibres are not used. A 

length-to-thickness ratio of 10 is considered, as it 

gives rise to sufficiently large bending deformations. 

The faces are assumed to be 2 mm thick, while the 

core is 6 mm thick. 

In Figure 11a attention is focused on the bending 

stress while in Figure 11b the shear stress across the 

thickness is represented. These quantities are 

normalised as follows: 

 
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0,

x
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                                   (52) 

From the through-the-thickness distribution of 

the transverse shear stress it could be noticed that the 

configuration reported in Figure 11a increases the 

maximum value of the shear stress in the faces, while 

it determines an appreciable decrease for the shear 

stress at the interface, which is the critical zone for 

the sandwich integrity. 

 

VII. CONCLUDING REMARKS 
Static and dynamic problems of laminated and 

sandwich structures were solved using a finite 

element model developed from a physically-based, 

3D zig-zag plate model with variable kinematics and 

fixed degrees of freedom, which a priori fulfils the 

displacement and stress contact conditions at the 

material interfaces and the boundary conditions at the 

upper and lower bounding faces, as prescribed by the 

elasticity theory.  

The virtues of this displacement-based structural 

model stem from the fact that its representation of 

displacements  can be locally refined (either across 

the thickness, or in the in-plane directions), though its 

functional d.o.f. are fixed (the classical displacements 

and shear rotations of the normal at the mid-plane). 

Owing to such variable kinematics, accurate stress 

predictions are always obtained from constitutive 

relations even with extremely high length-to-

thickness ratios, strong anisotropy, asymmetric 

stacking and distinctly different, abruptly changing  

properties of constituent layers, as well as nearby  in-

plane material/geometric discontinuities. Symbolic 

calculus was used to obtain automatically and once 

for all the expressions of continuity functions and 

high-order terms. A technique based on energy 

updating was used to convert the derivatives of the 

functional d.o.f., so that they do not appear as nodal 

d.o.f. in the finite element used in the analyses. 

The main advantage of the C° finite element 

model obtained in this way is that analyses are 

carried out with the minimal computational burden, 

memory storage occupation and processing time 

being comparable to that of equivalent single-layer 

models. 

Applications were presented to the study of  

indentation of sandwiches, to the analysis of  the 
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response of composite plates undergoing blast pulse 

loading and to the analysis of  benefits of variable-

stiffness layers on the response of laminates and 

sandwiches and on their stress fields. The accuracy of  

present results were  assessed  considering  laminates 

with different stacking sequences and sandwiches 

with laminated faces having intricate through-the-

thickness displacement and stress distributions, either 

due to their extremely high length-to-thickness ratios, 

strong anisotropy or distinctly different/ abruptly 

changing asymmetric  properties of constituent 

layers, for which exact solutions are available in the 

literature. In the cases where these solutions are not 

available, the present results were compared to 

experiments, like in the cases of  analysis of the 

collapse behaviour of honeycomb core  sandwiches 

with laminated faces subject to indentation loading. 

The results confirm that accuracy of  physically 

based zig-zag models is better than for of  

geometrically based zig-zag models, as shown in the 

literature. Indeed, the comparison with exact 

solutions shows that the present finite element model 

is always capable to reproduce with a high fidelity 

any quantity from the constitutive equations. 

In particular, the results show the capability of 

the finite element model to always accurately capture 

out-of-plane stresses from constitutive equations with 

a reasonably refined meshing and in a rather efficient 

way for all the sample cases examined, as tens of 

seconds were required to perform the analysis on a 

laptop computer. 

The analysis of sandwiches shows that even 

under transverse distributed loading with low 

magnitude the assumption of a constant transverse 

displacement is inappropriate, since as shown also by 

other studies in the literature the transverse normal 

stress becomes important for keeping equilibrium, the 

core being a rather “soft” material. The degradation 

due to failure or damage accumulation give rise to 

strongly steep-varying distributions that increase the 

importance of a correct representation of  transverse 

displacement and stress. The effects of the 

degradation of properties, which by the viewpoint of 

elastic moduli represent cases of abruptly changing 

materials across the thickness, are captured with the 

right accuracy, owing to the capability of the zig-zag 

model of being refined across the thickness (still 

requiring tens of seconds to perform the analysis).  

Indentation results show that apparent elastic 

moduli corresponding to each magnitude of the load 

while core collapses/buckles, can be computed apart 

and once for all without any accuracy loss through a 

detailed finite element analysis of the cellular 

structure of core. Apparent variable properties at any 

load level being preliminary computed apart, the 

analysis is subsequently carried out in homogenized 

form through an in-plane finite element 

discretization. 

In this way, the simulations of structures of 

industrial complexity are speeded up, avoiding the 

overloading computations due to the detailed 

modelling of the cellular structure. 

Incorporation of variable stiffness plies shows that 

lay-ups can be found that increase the bending 

stiffness and recover the transverse shear stress 

concentrations, as shown under static and blast pulse 

loading. 
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Table 1. Stress and displacement fields for laminated and sandwich-like beams by 3D elasticity solutions, by 

mixed elements with different kind of zig-zag functions and by the present element. Number in curly brackets 

are computational times in seconds. 

CASE A - SIMPLY SUPPORTED [90°/0°/90°/0°] BEAM 

   

u̅ max u̅ min σ ̅min σ ̅max 

L/2h Model w̅ z= -h z= +h z= 
(1)

z
+
 z=+h 

8 

Pagano [63] 0.0130 0.0290 -0.0150 -1.1380 1.2180 

Gherlone PHYS [14] 0.012852 0.026892 -0.014706 -1.127644 1.191691 

Gherlone MUR [14] 0.011202 0.020619 -0.013814 -1.06642 1.119342 

Present {18} 0.012864 0.027695 -0.014856 -1.132196 1.19973 

              

L/2h Model w̅ z= -h z= +h z= 
(1)

z
+
 z=+h 

14 

Pagano [63] 0.0140 0.0240 -0.0140 -1.0580 1.1200 

Gherlone PHYS [14] 0.013924 0.023302 -0.013903 -1.054191 1.111488 

Gherlone MUR [14] 0.013072 0.021178 -0.01359 -1.032925 1.0864 

Present {13} 0.01393 0.0237 -0.013972 -1.056413 1.116304 

      CASE B - SIMPLY SUPPORTED [0°/90°/0°/0°] BEAM 

   

u̅ max u̅ min σ ̅min σ ̅max 

L/2h Model w̅ z= -h z= +h z= 
(1)

z
+
 z=+h 

8 

Pagano [63] 0.0100 0.0120 -0.0100 -0.9570 0.7970 

Gherlone PHYS [14] 0.009512 0.011387 -0.01062 -0.905801 0.843784 

Gherlone MUR [14] 0.008728 0.013861 -0.008305 -1.10256 0.659836 

Present {18} 0.0098 0.011688 -0.0103 -0.936903 0.816527 

              

L/2h Model w̅ z= -h z= +h z= 
(1)

z
+
 z=+h 

14 

Pagano [63] 0.0080 0.0130 -0.0100 -1.0090 0.7570 

Gherlone PHYS [14] 0.007815 0.012708 -0.01029 -0.985087 0.777818 

Gherlone MUR [14] 0.007418 0.013931 -0.009126 -1.080034 0.689778 

Present {13} 0.00788 0.012844 -0.01013 -0.998013 0.765706 

CASE C - SIMPLY SUPPORTED SANDWICH-LIKE BEAM 

   

u̅ max u̅ min σ ̅min σ ̅max 

L/2h Model w̅ z= -h z= +h z= 
(2)

z
+
 z=+h 

8 

Pagano [63] 1.1530 0.3110 -0.5790 -24.5270 24.5190 

Gherlone PHYS [14] 0.677388 0.207872 -0.208151 -13.11459 13.11767 

Gherlone MUR [14] 0.126138 0.037724 -0.034103 -2.975125 2.150316 

Present {21} 1.148388 0.3124 -0.574368 -24.77202 24.30127 

      L/2h Model w̅ z= -h z= +h z= 
(2)

z
+
 z=+h 

24 

Pagano [63] 0.6740 0.2010 -0.2020 -12.6920 12.7160 

Gherlone PHYS [14] 0.652836 0.198005 -0.19901 -12.50289 12.5278 

Gherlone MUR [14] 0.023388 0.018954 -0.014908 -1.496387 0.938441 

Present {19} 0.66389 0.199673 -0.201495 -12.5538 12.57755 
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Figure 1. Stages of the procedure adopted to solve the indentation problem. 
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Figure 2. Optimized layers and in-plane variation of optimized Qij. 
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Figure 3. Comparison beetween solution by Pagano [63] (exact) and by the present model for a laminated 

[0°/90°/0°] plate: a) normalised transverse shear stress σ̅xz; b) normalised in-plane stress σ̅yz. 
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Figure 4. Comparison beetween solution by Pagano [63] (exact) and by the present model for a laminated 

[0°/90°] beam: a) normalised transverse shear stress; b) normalised in-plane stress; c) normalised transverse 

normal stress; d) normalised in-plane displacement. 

 

 
 

 
Figure 5. Comparison beetween exact solution [65] and solution by the present model for a sandwich beam with 

damaged core: a) normalised transverse shear stress; b) normalised transverse normal stress; c) normalised in-

plane displacement. 
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Figure 6. Transverse shear stress and transverse displacement for a sandwich plate by Brischetto et al. [66] 

(exact 3D solution and FEM solution) and by the present finite element. 
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Figure 7. Crushing behaviour for an aluminium honeycomb by Aminanda et al. [42] (experiment) and by the 

present element. 

 

 
 

 
Figure 8. Experimental [67] and present force-indentation curves for sandwich plates with a) 51WF foam core, 

b) 71WF foam core, c) 110WF foam core and d) 200WF foam core. 
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Figure 9. Comparison between experimental force-indentation curves by McQuigg [68] and by the present finite 

element for sandwich square panel with a) 3PCF honeycomb and b) 6 PCF honeycomb. 
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Figure 10. Non-dimensional deflection time history for the optimized lay-ups. 

 



Ugo Icardi Int. Journal of Engineering Research and Applications                                www.ijera.com 

ISSN : 2248-9622, Vol. 5, Issue 1( Part 3), January 2015, pp.25-56 

 www.ijera.com                                                                                                                                56 | P a g e  

 

 
Figure 11. a) In plane variation of the in-plane stress and b) through the thickness variation transverse shear 

stress for a sandwich beam with step-varying in-plane properties. 

 

 


